Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
1.
Semin Perinatol ; 48(2): 151889, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38565434

RESUMO

Patient-triggered modes of ventilation are currently the standard of practice in the care of term and preterm infants. Maintaining spontaneous breathing during mechanical ventilation promotes earlier weaning and possibly reduces ventilator-induced diaphragmatic dysfunction. A further development of assisted ventilation provides support in proportion to the respiratory effort and enables the patient to have full control of their ventilatory cycle. In this paper we will review the literature on two of these modes of ventilation: neurally adjusted ventilatory assist (NAVA) and proportional assist ventilation (PAV), propose future studies and suggest clinical applications of these modes.


Assuntos
Suporte Ventilatório Interativo , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Respiração Artificial , Diafragma , Volume de Ventilação Pulmonar
3.
Med. intensiva (Madr., Ed. impr.) ; 48(4): 200-210, abr. 2024. tab, graf
Artigo em Inglês | IBECS | ID: ibc-231955

RESUMO

Objective To explore combined non-invasive-respiratory-support (NIRS) patterns, reasons for NIRS switching, and their potential impact on clinical outcomes in acute-hypoxemic-respiratory-failure (AHRF) patients. Design Retrospective, single-center observational study. Setting Intensive Care Medicine. Patients AHRF patients (cardiac origin and respiratory acidosis excluded) underwent combined NIRS therapies such as non-invasive-ventilation (NIV) and High-Flow-Nasal-Cannula (HFNC). Interventions Patients were classified based on the first NIRS switch performed (HFNC-to-NIV or NIV-to-HFNC), and further specific NIRS switching strategies (NIV trial-like vs. Non-NIV trial-like and single vs. multiples switches) were independently evaluated. Main variables of interest Reasons for switching, NIRS failure and mortality rates. Results A total of 63 patients with AHRF were included, receiving combined NIRS, 58.7% classified in the HFNC-to-NIV group and 41.3% in the NIV-to-HFNC group. Reason for switching from HFNC to NIV was AHRF worsening (100%), while from NIV to HFNC was respiratory improvement (76.9%). NIRS failure rates were higher in the HFNC-to-NIV than in NIV-to-HFNC group (81% vs. 35%, p < 0.001). Among HFNC-to-NIV patients, there was no difference in the failure rate between the NIV trial-like and non-NIV trial-like groups (86% vs. 78%, p = 0.575) but the mortality rate was significantly lower in NIV trial-like group (14% vs. 52%, p = 0.02). Among NIV to HFNC patients, NIV failure was lower in the single switch group compared to the multiple switches group (15% vs. 53%, p = 0.039), with a shorter length of stay (5 [2–8] vs. 12 [8–30] days, p = 0.001). Conclusions NIRS combination is used in real life and both switches’ strategies, HFNC to NIV and NIV to HFNC, are common in AHRF management. Transitioning from HFNC to NIV is suggested as a therapeutic escalation and in this context performance of a NIV-trial could be beneficial. ... (AU)


Objetivo Explorar los patrones combinados de soporte-respiratorio-no-invasivo (SRNI), las razones para cambiar de SRNI y su potencial impacto en los resultados clínicos en pacientes con insuficiencia-respiratoria-aguda-hipoxémica (IRAH). Diseño Estudio observacional retrospectivo unicéntrico. Ámbito Cuidados Intensivos. Pacientes Pacientes con IRAH (excluyendo causa cardíaca y acidosis respiratoria) que recibieron tanto ventilación-no-invasiva (VNI) como cánula-nasal-de-alto-flujo (CNAF). Intervenciones Se categorizó a los pacientes según el primer cambio de SRNI realizado (CNAF-to-VNI o VNI-to-CNAF) y se evaluaron estrategias específicas de SRNI (VNI trial-like vs. Non-VNI trial-like y cambio único vs. múltiples cambios de NIRS) de manera independiente. Variables de interés principales Razones para el cambio, así como las tasas de fracaso de SRNI y la mortalidad. Resultados Un total de 63 pacientes recibieron SRNI combinado, 58,7% clasificados en el grupo CNAF-to-VNI y 41,3% en el grupo VNI-to-CNAF. Los cambios de CNAF a VNI ocurrieron por empeoramiento de la IRHA (100%) y de VNI a CNAF por mejora respiratoria (76.9%). Las tasas de fracaso de SRNI fueron mayores de CNAF a VNI que de VNI a CNAF (81% vs. 35%, p < 0.001). Dentro de los pacientes de CNAF a VNI, no hubo diferencia en las tasas de fracaso entre los grupos VNI trial-like y no-VNI trial-like (86% vs. 78%, p = 0.575), pero la mortalidad fue menor en el grupo VNI trial-like (14% vs. 52%, p = 0.02). Dentro de los pacientes de VNI a CNAF, el fracaso de VNI fue menor en grupo de cambio único vs. múltiple (15% vs. 53%, p = 0.039). Conclusiones Los cambios de estrategia de SRNI son comunes en el manejo clínico diario de la IRHA. El cambio de CNAF a VNI impresiona de ser una escalada terapéutica y en este contexto la realización de un VNI-trial puede ser beneficioso. Al contrario, cambiar de VNI a CNAF impresiona de ser una desescalada terapéutica y parece segura si no hay fracaso ... (AU)


Assuntos
Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Insuficiência Respiratória/terapia , Dispositivos de Proteção Respiratória , Mecânica Respiratória , Suporte Ventilatório Interativo , Tratamento Conservador/instrumentação , Tratamento Conservador/métodos , Estudos Retrospectivos , Pneumonia , Síndrome do Desconforto Respiratório do Recém-Nascido
4.
Trials ; 25(1): 201, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509583

RESUMO

BACKGROUND: Invasive mechanical ventilation contributes to bronchopulmonary dysplasia (BPD), the most common complication of prematurity and the leading respiratory cause of childhood morbidity. Non-invasive ventilation (NIV) may limit invasive ventilation exposure and can be either synchronized or non-synchronized (NS). Pooled data suggest synchronized forms may be superior. Non-invasive neurally adjusted ventilatory assist (NIV-NAVA) delivers NIV synchronized to the neural signal for breathing, which is detected with a specialized catheter. The DIVA (Diaphragmatic Initiated Ventilatory Assist) trial aims to determine in infants born 240/7-276/7 weeks' gestation undergoing extubation whether NIV-NAVA compared to non-synchronized nasal intermittent positive pressure ventilation (NS-NIPPV) reduces the incidence of extubation failure within 5 days of extubation. METHODS: This is a prospective, unblinded, pragmatic, multicenter phase III randomized clinical trial. Inclusion criteria are preterm infants 24-276/7 weeks gestational age who were intubated within the first 7 days of life for at least 12 h and are undergoing extubation in the first 28 postnatal days. All sites will enter an initial run-in phase, where all infants are allocated to NIV-NAVA, and an independent technical committee assesses site performance. Subsequently, all enrolled infants are randomized to NIV-NAVA or NS-NIPPV at extubation. The primary outcome is extubation failure within 5 days of extubation, defined as any of the following: (1) rise in FiO2 at least 20% from pre-extubation for > 2 h, (2) pH ≤ 7.20 or pCO2 ≥ 70 mmHg; (3) > 1 apnea requiring positive pressure ventilation (PPV) or ≥ 6 apneas requiring stimulation within 6 h; (4) emergent intubation for cardiovascular instability or surgery. Our sample size of 478 provides 90% power to detect a 15% absolute reduction in the primary outcome. Enrolled infants will be followed for safety and secondary outcomes through 36 weeks' postmenstrual age, discharge, death, or transfer. DISCUSSION: The DIVA trial is the first large multicenter trial designed to assess the impact of NIV-NAVA on relevant clinical outcomes for preterm infants. The DIVA trial design incorporates input from clinical NAVA experts and includes innovative features, such as a run-in phase, to ensure consistent technical performance across sites. TRIAL REGISTRATION: www. CLINICALTRIALS: gov , trial identifier NCT05446272 , registered July 6, 2022.


Assuntos
Suporte Ventilatório Interativo , Ventilação não Invasiva , Lactente , Recém-Nascido , Humanos , Ventilação com Pressão Positiva Intermitente/efeitos adversos , Lactente Extremamente Prematuro , Suporte Ventilatório Interativo/efeitos adversos , Suporte Ventilatório Interativo/métodos , Extubação/efeitos adversos , Estudos Prospectivos , Ventilação não Invasiva/efeitos adversos , Ventilação não Invasiva/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase III como Assunto
5.
Crit Care Nurs Clin North Am ; 36(1): 51-67, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296376

RESUMO

Systematic Reviews and Randomized clinical trials have shown that the use of noninvasive ventilation (NIV) compared to invasive mechanical ventilation reduces the risk of bronchopulmonary dysplasia and or mortality. Most commonly used NIV modes include nasal continuous positive airway pressure, bi-phasic modes, such as, bi-level positive airway pressure, nasal intermittent positive pressure ventilation, high flow nasal cannula, noninvasive neurally adjusted ventilatory assist, and nasal high frequency ventilation are discussed in this review.


Assuntos
Suporte Ventilatório Interativo , Ventilação não Invasiva , Recém-Nascido , Humanos , Respiração Artificial , Pressão Positiva Contínua nas Vias Aéreas , Ventilação com Pressão Positiva Intermitente
6.
Trials ; 25(1): 72, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245741

RESUMO

BACKGROUND: Neurally adjusted ventilatory assist (NAVA) is a mode of mechanical ventilation that delivers oxygen pressures in proportion to electrical signals of the diaphragm. The proportional assistance can be adjusted by the clinician to reduce the patient's work of breathing. Several case series of infants with congenital diaphragmatic hernias (CDH) have shown that NAVA may reduce oxygenation index and mean airway pressures. To date, no clinical trial has compared NAVA to standard methods of mechanical ventilation for babies with CDH. METHODS: The aim of this dual-centre randomised cross-over trial is to compare post-operative NAVA with assist control ventilation (ACV) for infants with CDH. If eligible, infants will be enrolled for a ventilatory support tolerance trial (VSTT) to assess their suitability for randomisation. If clinically stable during the VSTT, infants will be randomised to receive either NAVA or ACV first in a 1:1 ratio for a 4-h period. The oxygenation index, respiratory severity score and cumulative sedative medication use will be measured. DISCUSSION: Retrospective studies comparing NAVA to ACV in neonates with congenital diaphragmatic hernia have shown the ventilatory mode may improve respiratory parameters and benefit neonates. To our knowledge, this is the first prospective cross-over trial comparing NAVA to ACV. TRIAL REGISTRATION: NAN-C was prospectively registered on ClinicalTrials.gov NCT05839340  Registered on May 2023.


Assuntos
Hérnias Diafragmáticas Congênitas , Suporte Ventilatório Interativo , Humanos , Recém-Nascido , Estudos Cross-Over , Hérnias Diafragmáticas Congênitas/diagnóstico , Hérnias Diafragmáticas Congênitas/terapia , Suporte Ventilatório Interativo/métodos , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Respiração Artificial/métodos , Estudos Retrospectivos
7.
Eur J Med Res ; 29(1): 7, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173023

RESUMO

OBJECTIVE: This study assessed the predictive value of electrical activity of the diaphragm (EAdi) and the EAdi-derived monitoring index in the prognosis of patients with severe cerebral hemorrhage. METHODS: Ninety patients with severe cerebral hemorrhage were admitted to the Neurosurgery Intensive Care Unit of Yijishan Hospital from April 2019 to June 2021 and were divided into the good prognosis group (Glasgow Outcome Scale [GOS] ≥ 4) and poor prognosis group (GOS ≤ 3). The receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to evaluate prediction accuracy. RESULTS: EAdi, neuro-ventilatory efficiency (NVE), and neuro-muscular efficiency (NME) in patients with good prognosis were significantly higher than those in patients with poor prognosis (4.707 µV vs 2.80 µV, P < 0.001; 141.85 ml/µV vs 66.01 ml/µV, P = 0.000; 2.57 cm H2O/µV vs 1.37 cm H2O/µV, P = 0.000). The area under the ROC curve for the EAdi score was 0.719, with sensitivity of 69.70% and specificity of 68.42% when EAdi was 3.6 µV. The AUC for NVE score was 0.793, with sensitivity of 75.76% and specificity of 75.44% when the NVE value was 95.32 ml/µV. The AUC for NME score was 0.792, with sensitivity of 69.70% and specificity of 78.95% when the NME value was 2.06 H2O/µV. The 6-month survival time of patients with higher EAdi, NVE, and NME was significantly longer than that of patients with lower EAdi, NVE, and NME CONCLUSION: EAdi, NVE, and NME can be used as indices for predicting the prognosis of patients with severe cerebral hemorrhage. TRIAL REGISTRATION NO: ChiCTR1900022861. Registered April 28, 2019, http://www.chictr.org.cn .


Assuntos
Suporte Ventilatório Interativo , Humanos , Diafragma , Prognóstico , Curva ROC , Hemorragia Cerebral/diagnóstico , Hemorragia Cerebral/terapia
8.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(11): 1229-1232, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-37987137

RESUMO

Mechanical ventilation has, since its introduction into clinical practice, undergone a major evolution from controlled ventilation to diverse modes of assisted ventilation. Conventional mechanical ventilators depend on flow sensors and pneumatic pressure and controllers to complete the respiratory cycle. Neurally adjusted ventilatory assist (NAVA) is a new form of assisted ventilation in recent years, which monitors the electrical activity of the diaphragm (EAdi) to provide an appropriately level of pressure support. And EAdi is the best available signal to sense central respiratory drive and trigger ventilatory assist. Unlike other ventilation modes, NAVA breathing instructions come from the center. Therefore, NAVA have the synchronous nature of the breaths and the patient-adjusted nature of the support. Compared with traditional ventilation mode, NAVA can efficiently unload respiratory muscles, relieve the risk of ventilator-induced lung injury (VILI), improve patient-ventilator coordination, enhance gas exchange, increase the success rate of weaning, etc. This article reviews the research progress of NAVA in order to provide theoretical guidance for clinical applications.


Assuntos
Suporte Ventilatório Interativo , Humanos , Respiração Artificial , Respiração com Pressão Positiva , Diafragma/fisiologia , Músculos Respiratórios/fisiologia
9.
Crit Care ; 27(1): 325, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626372

RESUMO

BACKGROUND: Mechanical ventilation is applied to unload the respiratory muscles, but knowledge about transpulmonary driving pressure (ΔPL) is important to minimize lung injury. We propose a method to estimate ΔPL during neurally synchronized assisted ventilation, with a simple intervention of lowering the assist for one breath ("lower assist maneuver", LAM). METHODS: In 24 rabbits breathing spontaneously with imposed loads, titrations of increasing assist were performed, with two neurally synchronized modes: neurally adjusted ventilatory assist (NAVA) and neurally triggered pressure support (NPS). Two single LAM breaths (not sequentially, but independently) were performed at each level of assist by acutely setting the assist to zero cm H2O (NPS) or NAVA level 0 cm H2O/uV (NAVA) for one breath. NPS and NAVA titrations were followed by titrations in controlled-modes (volume control, VC and pressure control, PC), under neuro-muscular blockade. Breaths from the NAVA/NPS titrations were matched (for flow and volume) to VC or PC. Throughout all runs, we measured diaphragm electrical activity (Edi) and esophageal pressure (PES). We measured ΔPL during the spontaneous modes (PL_PES) and controlled mechanical ventilation (CMV) modes (PL_CMV) with the esophageal balloon. From the LAMs, we derived an estimation of ΔPL ("PL_LAM") using a correction factor (ratio of volume during the LAM and volume during assist) and compared it to measured ΔPL during passive (VC or PC) and spontaneous breathing (NAVA or NPS). A requirement for the LAM was similar Edi to the assisted breath. RESULTS: All animals successfully underwent titrations and LAMs for NPS/NAVA. One thousand seven-hundred ninety-two (1792) breaths were matched to passive ventilation titrations (matched Vt, r = 0.99). PL_LAM demonstrated strong correlation with PL_CMV (r = 0.83), and PL_PES (r = 0.77). Bland-Altman analysis revealed little difference between the predicted PL_LAM and measured PL_CMV (Bias = 0.49 cm H2O and 1.96SD = 3.09 cm H2O). For PL_PES, the bias was 2.2 cm H2O and 1.96SD was 3.4 cm H2O. Analysis of Edi and PES at peak Edi showed progressively increasing uncoupling with increasing assist. CONCLUSION: During synchronized mechanical ventilation, a LAM breath allows for estimations of transpulmonary driving pressure, without measuring PES, and follows a mathematical transfer function to describe respiratory muscle unloading during synchronized assist.


Assuntos
Infecções por Citomegalovirus , Suporte Ventilatório Interativo , Animais , Coelhos , Respiração Artificial , Respiração com Pressão Positiva , Respiração
10.
J Clin Monit Comput ; 37(6): 1635-1639, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37458915

RESUMO

BACKGROUND: Neurally Adjusted Ventilatory Assist (NAVA) is an adaptive ventilation mode that recognizes electromyographic diaphragmatic activation as a sensory input to control the ventilator. NAVA may be of interest in prolonged mechanical ventilation and weaning, as it provides effort-adapted support, improves patient-ventilator synchronization, and allows additional monitoring of neuromuscular function and drive. Ventricular assist devices (VAD), especially for the left ventricle (LVAD), are increasingly entering clinical practice, and intensivists are faced with distinct challenges such as the interaction between the system and other measures of organ support. CASE PRESENTATION: We present two cases in which a NAVA mode was intended to support ventilator weaning in patients with recent LVAD implantation (HeartMate III®). However, in these patients, the electrical activity of the diaphragm (Edi) could not be used to control the ventilator, because the LVAD current detected by the catheter superposed the Edi current, making usage of this mode impossible. DISCUSSION/CONCLUSIONS: An implanted LVAD can render the NAVA signal unusable for ventilatory support because the LVAD signal can interfere with the recording of electromyographic activation of the diaphragm. Therefore, patients with implanted LVAD may need other modes of ventilation than NAVA for advanced weaning strategies.


Assuntos
Coração Auxiliar , Suporte Ventilatório Interativo , Humanos , Ventrículos do Coração , Respiração Artificial , Diafragma/fisiologia , Cateteres
12.
Respir Care ; 68(8): 1049-1057, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37160340

RESUMO

BACKGROUND: Despite decades of research on predictors of extubation success, use of ventilatory support after extubation is common and 10-20% of patients require re-intubation. Proportional assist ventilation (PAV) mode automatically calculates estimated total work of breathing (total WOB). Here, we assessed the performance of total WOB to predict extubation failure in invasively ventilated subjects. METHODS: This prospective observational study was conducted in 6 adult ICUs at an academic medical center. We enrolled intubated subjects who successfully completed a spontaneous breathing trial, had a rapid shallow breathing index < 105 breaths/min/L, and were deemed ready for extubation by the primary team. Total WOB values were recorded at the end of a 30-min PAV trial. Extubation failure was defined as any respiratory support and/or re-intubation within 72 h of extubation. We compared total WOB scores between groups and performance of total WOB for predicting extubation failure with receiver operating characteristic curves. RESULTS: Of 61 subjects enrolled, 9.8% (n = 6) required re-intubation, and 50.8% (n = 31) required any respiratory support within 72 h of extubation. Median total WOB at 30 min on PAV was 0.9 J/L (interquartile range 0.7-1.3 J/L). Total WOB was significantly different between subjects who failed or were successfully extubated (median 1.1 J/L vs 0.7 J/L, P = .004). The area under the curve was 0.71 [95% CI 0.58-0.85] for predicting any requirement of respiratory support and 0.85 [95% CI 0.69-1.00] for predicting re-intubation alone within 72 h of extubation. Total WOB cutoff values maximizing sensitivity and specificity equally were 1.0 J/L for any respiratory support (positive predictive value [PPV] 70.0%, negative predictive value [NPV] 67.7%) and 1.3 J/L for re-intubation (PPV 26.3%, NPV 97.6%). CONCLUSIONS: The discriminative performance of a PAV-derived total WOB value to predict extubation failure was good, indicating total WOB may represent an adjunctive tool for assessing extubation readiness. However, these results should be interpreted as preliminary, with specific thresholds of PAV-derived total WOB requiring further investigation in a large multi-center study.


Assuntos
Suporte Ventilatório Interativo , Adulto , Humanos , Trabalho Respiratório , Extubação/métodos , Respiração , Desmame do Respirador/métodos
13.
Pediatr Int ; 65(1): e15360, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37026800

RESUMO

BACKGROUND: Neurally adjusted ventilatory assist (NAVA) is a new mode of subject-triggered ventilation. Experience with the use of NAVA in preterm infants is limited. This study compared the effects of invasive mechanical ventilation with NAVA to conventional intermittent mandatory ventilation (CIMV) in terms of reducing the duration of oxygen requirement and invasive ventilator support in preterm infants. METHODS: This was a prospective study. We enrolled infants of less than 32 weeks' gestation who were then randomized to receive either NAVA or CIMV support during hospitalization. We recorded and analyzed data on the maternal history during pregnancy, use of medications, neonatal data at admission, neonatal diseases, and respiratory support in the neonatal intensive care unit. RESULTS: There were 26 preterm infants in the NAVA group and 27 preterm infants in the CIMV group. Significantly fewer infants in the NAVA group received supplemental oxygen at 28 days of age (12 [46%] vs. 21 [78%], p = 0.0365), and they required significantly fewer days of invasive ventilator support: 7.73 (± 2.39) vs. 17.26 (± 3.65), p = 0.0343. CONCLUSIONS: Compared with CIMV, NAVA appears to allow for more rapid weaning from invasive ventilation and decreases the incidence of bronchopulmonary dysplasia, especially in preterm infants with severe respiratory distress syndrome treated with surfactants.


Assuntos
Recém-Nascido Prematuro , Suporte Ventilatório Interativo , Lactente , Recém-Nascido , Humanos , Estudos Prospectivos , Respiração Artificial , Oxigênio
14.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(2): 182-188, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36916379

RESUMO

OBJECTIVE: To explore the prognostic effect and safety of neurally adjusted ventilatory assist (NAVA) mode on the patients with severe neurological cerebrovascular disease undergoing mechanical ventilation. METHODS: A prospective study was conducted. Fifty-four patients with cerebrovascular disease undergoing mechanical ventilation admitted to the neurosurgery intensive care unit (NSICU) of the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital) from December 2020 to May 2022 were enrolled. They were divided into NAVA group and pressure support ventilation (PSV) group by computer random number generator with 27 patients in each group. The ventilation time of the two groups was ≥ 72 hours. The general basic data of the two groups were recorded. The time without mechanical ventilation 28 days after enrollment, total length of mechanical ventilation, survival rate of 90 days after enrollment, length of NSICU stay, total length of hospital stay, NSICU mortality, in-hospital mortality, Glasgow outcome score (GOS), complications related to mechanical ventilation, and changes of respiratory mechanics indexes, arterial blood gases, vital signs, and diaphragm function indexes were observed. RESULTS: The time without mechanical ventilation 28 days after enrollment in the NAVA group was significantly longer than that in the PSV group [days: 22 (15, 26) vs. 6 (0, 23), P < 0.05]. However, there were no significant differences in the total length of mechanical ventilation, 90-day survival rate, length of NSICU stay, total length of hospital stay, NSICU mortality, in-hospital mortality, GOS score, and incidence of mechanical ventilator-related complications between the two groups. In terms of respiratory mechanics parameters, the expiratory tidal volume (VTe) on 3 days after mechanical ventilation of patients in the NAVA group was significantly lower than that on 1 day and 2 days, and significantly lower than that in the PSV group [mL: 411.0 (385.2, 492.6) vs. 489.0 (451.8, 529.4), P < 0.01]. Minute ventilation (MV) at 2 days and 3 days in the NAVA group was significantly higher than that at 1 day, and significantly higher than that in the PSV group at 2 days [L/min: 9.8 (8.4, 10.9) vs. 7.8 (6.5, 9.8), P < 0.01], while there was no significant change of MV in the PSV group. At 1 day, peak airway pressure (Ppeak) and mean airway pressure (Pmean) in the NAVA group were significantly lower than those in the PSV group [Ppeak (cmH2O, 1 cmH2O ≈ 0.098 kPa): 14.0 (12.2, 17.0) vs. 16.6 (15.0, 17.4), Pmean (cmH2O): 7.0 (6.2, 7.9) vs. 8.0 (7.0, 8.2), both P < 0.05]. However, there was no significant difference in the Ppeak or Pmean at 2 days and 3 days between the two groups. In terms of arterial blood gas, there was no significant difference in pH value between the two groups, but with the extension of mechanical ventilation time, the pH value at 3 days of the two groups was significantly higher than that at 1 day. Arterial partial pressure of oxygen (PaO2) at 1 day in the NAVA group was significantly lower than that in the PSV group [mmHg (1 mmHg ≈ 0.133 kPa): 122.01±37.77 vs. 144.10±40.39, P < 0.05], but there was no significant difference in PaO2 at 2 days and 3 days between the two groups. There was no significant difference in arterial partial pressure of carbon dioxide (PaCO2) or oxygenation index (PaO2/FiO2) between the two groups. In terms of vital signs, the respiratory rate (RR) at 1, 2, and 3 days of the NAVA group was significantly higher than that of the PSV group [times/min: 19.2 (16.0, 25.2) vs. 15.0 (14.4, 17.0) at 1 day, 21.4 (16.4, 26.0) vs. 15.8 (14.0, 18.6) at 2 days, 20.6 (17.0, 23.0) vs. 16.7 (15.0, 19.0) at 3 days, all P < 0.01]. In terms of diaphragm function, end-inspiratory diaphragm thickness (DTei) at 3 days in the NAVA group was significantly higher than that in the PSV group [cm: 0.26 (0.22, 0.29) vs. 0.22 (0.19, 0.26), P < 0.05]. There was no significant difference in end-expiratory diaphragm thickness (DTee) between the two groups. The diaphragm thickening fraction (DTF) at 2 days and 3 days in the NAVA group was significantly higher than that in the PSV group [(35.18±12.09)% vs. (26.88±8.33)% at 2 days, (35.54±13.40)% vs. (24.39±9.16)% at 3 days, both P < 0.05]. CONCLUSIONS: NAVA mode can be applied in patients with neuro-severe cerebrovascular disease, which can prolong the time without mechanical ventilation support and make patients obtain better lung protective ventilation. At the same time, it has certain advantages in avoiding ventilator-associated diaphragm dysfunction and improving diaphragm function.


Assuntos
Transtornos Cerebrovasculares , Suporte Ventilatório Interativo , Doenças do Sistema Nervoso , Humanos , Respiração Artificial , Estudos Prospectivos , Pulmão
15.
Trials ; 24(1): 232, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973743

RESUMO

BACKGROUND: Proportional assist ventilation with load-adjustable gain factors (PAV+) is a mechanical ventilation mode that delivers assistance to breathe in proportion to the patient's effort. The proportional assistance, called the gain, can be adjusted by the clinician to maintain the patient's respiratory effort or workload within a normal range. Short-term and physiological benefits of this mode compared to pressure support ventilation (PSV) include better patient-ventilator synchrony and a more physiological response to changes in ventilatory demand. METHODS: The objective of this multi-centre randomized controlled trial (RCT) is to determine if, for patients with acute respiratory failure, ventilation with PAV+ will result in a shorter time to successful extubation than with PSV. This multi-centre open-label clinical trial plans to involve approximately 20 sites in several continents. Once eligibility is determined, patients must tolerate a short-term PSV trial and either (1) not meet general weaning criteria or (2) fail a 2-min Zero Continuous Positive Airway Pressure (CPAP) Trial using the rapid shallow breathing index, or (3) fail a spontaneous breathing trial (SBT), in this sequence. Then, participants in this study will be randomized to either PSV or PAV+ in a 1:1 ratio. PAV+ will be set according to a target of muscular pressure. The weaning process will be identical in the two arms. Time to liberation will be the primary outcome; ventilator-free days and other outcomes will be measured. DISCUSSION: Meta-analyses comparing PAV+ to PSV suggest PAV+ may benefit patients and decrease healthcare costs but no powered study to date has targeted the difficult to wean patient population most likely to benefit from the intervention, or used consistent timing for the implementation of PAV+. Our enrolment strategy, primary outcome measure, and liberation approaches may be useful for studying mechanical ventilation and weaning and can offer important results for patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT02447692 . Prospectively registered on May 19, 2015.


Assuntos
Suporte Ventilatório Interativo , Respiração Artificial , Humanos , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Suporte Ventilatório Interativo/efeitos adversos , Desmame do Respirador/métodos , Respiração com Pressão Positiva/métodos , Respiração , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
16.
J Crit Care ; 76: 154287, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36958129

RESUMO

PURPOSE: Neurally adjusted ventilatory assist mode (NAVA) benefit in mechanical ventilation (MV) patients with regard to clinically outcomes is still uncertain. Recent randomized clinical trials (RCTs) have addressed this issue, making it important to assess the real impact of NAVA in relation to these outcomes. MATERIALS AND METHODS: We performed a systematic review and meta-analysis of RCTs comparing NAVA ventilation mode versus the standard ventilation mode in critically ill adult patients admitted to the ICU with invasive MV. The main outcome was 28-days ventilatory free-days (VFD). Secondary outcomes were weaning failure, mortality, ICU and hospital length of stay and need for tracheostomy. RESULTS: We included 5 RCTs (643 patients). The patients in the NAVA group had increased VFDs compared to the control group: mean difference (MD) 3.42 (95% CI 1.21 to 5.62, I2 = 0%). NAVA and control groups did not differ in ICU mortality [OR 0.58 (95% CI 0.33 to 1.03), I2 = 41%]. NAVA mode was associated with a reduced incidence of weaning failure [OR 0.51 (95% CI 0.29 to 0.88), I2 = 0%]. NAVA and control groups did not differ in the number of MV days: MD -1.9 days (95% CI -4.2 to 0.3, I2 = 0%). CONCLUSIONS: NAVA mode has a modest impact on MV-free days and weaning success, with no association with improvements in other relevant clinical outcomes.


Assuntos
Suporte Ventilatório Interativo , Respiração Artificial , Adulto , Humanos , Desmame do Respirador , Traqueostomia , Hospitalização
17.
Pediatr Pulmonol ; 58(5): 1542-1550, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807570

RESUMO

BACKGROUND: Neurally adjusted ventilatory assist (NAVA) is a ventilatory mode that delivers synchronized ventilation, proportional to the electrical activity of the diaphragm (EAdi). Although it has been proposed in infants with a congenital diaphragmatic hernia (CDH), the diaphragmatic defect and the surgical repair could alter the physiology of the diaphragm. AIM: To evaluate, in a pilot study, the relationship between the respiratory drive (EAdi) and the respiratory effort in neonates with CDH during the postsurgical period under either NAVA ventilation or conventional ventilation (CV). METHODS: This prospective physiological study included eight neonates admitted to a neonatal intensive care unit with a diagnosis of CDH. EAdi, esophageal, gastric, and transdiaphragmatic pressure, as well as clinical parameters, were recorded during NAVA and CV (synchronized intermittent mandatory pressure ventilation) in the postsurgical period. RESULTS: EAdi was detectable and there was a correlation between the ΔEAdi (maximal - minimal values) and the transdiaphragmatic pressure (r = 0.26, 95% confidence interval [CI] [0.222; 0.299]). There was no significant difference in terms of clinical or physiological parameters during NAVA compared to CV, including work of breathing. CONCLUSION: Respiratory drive and effort were correlated in infants with CDH and therefore NAVA is a suitable proportional mode in this population. EAdi can also be used to monitor the diaphragm for individualized support.


Assuntos
Hérnias Diafragmáticas Congênitas , Suporte Ventilatório Interativo , Lactente , Recém-Nascido , Humanos , Hérnias Diafragmáticas Congênitas/cirurgia , Projetos Piloto , Estudos Prospectivos , Diafragma/fisiologia , Taxa Respiratória , Respiração Artificial
19.
Med Biol Eng Comput ; 61(6): 1329-1341, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36698031

RESUMO

Respiration and cardiac activity are strictly interconnected with reciprocal influences. They act as weakly coupled oscillators showing varying degrees of phase synchronization and their interactions are affected by mechanical ventilation. The study aims at differentiating the impact of three ventilatory modes on the cardiorespiratory phase coupling in critically ill patients. The coupling between respiration and heartbeat was studied through cardiorespiratory phase synchronization analysis carried out via synchrogram during pressure control ventilation (PCV), pressure support ventilation (PSV), and neurally adjusted ventilatory assist (NAVA) in critically ill patients. Twenty patients were studied under all the three ventilatory modes. Cardiorespiratory phase synchronization changed significantly across ventilatory modes. The highest synchronization degree was found during PCV session, while the lowest one with NAVA. The percentage of all epochs featuring synchronization regardless of the phase locking ratio was higher with PCV (median: 33.9%, first-third quartile: 21.3-39.3) than PSV (median: 15.7%; first-third quartile: 10.9-27.8) and NAVA (median: 3.7%; first-third quartile: 3.3-19.2). PCV induces a significant amount of cardiorespiratory phase synchronization in critically ill mechanically ventilated patients. Synchronization induced by patient-driven ventilatory modes was weaker, reaching the minimum with NAVA. Findings can be explained as a result of the more regular and powerful solicitation of the cardiorespiratory system induced by PCV. The degree of phase synchronization between cardiac and respiratory activities in mechanically ventilated humans depends on the ventilatory mode.


Assuntos
Suporte Ventilatório Interativo , Respiração Artificial , Humanos , Estado Terminal/terapia , Respiração com Pressão Positiva , Coração
20.
J Crit Care ; 75: 154250, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36680884

RESUMO

PURPOSE: No study has compared neurally adjusted ventilator assist (NAVA) with adaptive support ventilation (ASV) during non-invasive ventilation (NIV) in subjects with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). MATERIALS AND METHODS: In this randomized controlled trial, we compared NAVA-NIV with ASV-NIV for delivering NIV in consecutive subjects with AECOPD. The primary outcome was NIV failure rate (invasive mechanical ventilation). The key secondary outcomes were number of NIV manipulations, asynchrony index, and 90-day mortality. RESULTS: We enrolled 76 subjects (NAVA-NIV, n = 36, ASV-NIV, n = 40; 74% males) with a mean ± SD age of 61.4 ± 8.2 years. We found no difference in NIV failure rates between the two arms (NAVA-NIV vs. ASV-NIV; 8/36 [22.2%] vs. 8/40 [20%]; p = 0.83). The median physician manipulations for NIV were significantly less in the ASV-NIV arm than in the NAVA-NIV arm (2 [0.8-4] vs. 3 [2-5]; p= 0.014) during the initial 24-h. We found no difference in median asynchrony index (NAVA-NIV vs. ASV-NIV, 16.6% vs. 16.4%, p = 0.5) and 90-day mortality (22.2% vs. 17.5%, p = 0.67). CONCLUSION: The use of NAVA-NIV was not superior to ASV-NIV in reducing NIV failure rates in AECOPD. Both NAVA-NIV and ASV-NIV had similar asynchrony index and 90-day mortality. TRIAL REGISTRY: www. CLINICALTRIALS: gov (NCT04414891).


Assuntos
Suporte Ventilatório Interativo , Ventilação não Invasiva , Doença Pulmonar Obstrutiva Crônica , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Respiração Artificial , Doença Pulmonar Obstrutiva Crônica/terapia , Ventiladores Mecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...